
Research Statement

Evan Johnson

Promises are cheap. Software vendors routinely describe their offerings as “secure”, but few are based on
designs that can guarantee even the most basic security properties. Indeed, even guaranteeing memory safety can
be inherently challenging as code written in C and C++ requires developers to manually enforce safety, and if
one developer misses one safety check, the system’s guarantees vanish. Languages like Rust and WebAssembly
(Wasm) promise to address these shortcomings by design, at the language level. By building a system using these
languages, you completely eliminate whole classes of vulnerabilities like memory unsafety by construction. This
is a fundamental advance in how we build systems, and everyone from Google [24] and Cloudflare [27] to the
White House [21] extoll the promises of Rust and Wasm. But these promises too can fall short: any vulnerability
in the execution stack—compiler, runtime, and OS—can undermine language-level security [2, 3, 5, 6].

My research bridges this gap to deliver on the promise of language-level security by combining principled
system design and practical formal methods. I do this by building systems that prove key (vulnerable) components
of the execution stack are bug-free, removing the need to trust them. For instance, three systems I built, Veri-
Wasm [9], WaVe [8], and VTock [26] remove the need to trust the compiler, language runtime, and OS respectively.
What these three systems have in common is that they all adhere to two key design concepts that are central to my
system-building philosophy. First, systems should be principled: they should not rely on developers to correctly
implement ad-hoc safety checks—they should instead be built on well-defined security properties that can be
automatically checked and enforced. Second, they should be practical: to see adoption, systems need to be built
them with real production constraints in mind. My Wasm binary verifier VeriWasm [9], for example, was deployed
on Fastly’s production serverless platform exactly because I designed the system with deployment constraints
from the start—that the verifier be (1) fully automatic to avoid manual proof burden, (2) fast enough to run in
continuous integration pipelines, and (3) precise enough to handle the output of existing production compilers.

My research combines practical system design and principled formal techniques to prevent vulnerabilities in
real systems. As such, I work at the intersection of security [7–9, 18], systems [1, 19, 20], and programming lan-
guages [11, 13] and actively collaborate with researchers from all three fields. This practical and interdisciplinary
approach has made it unusually amenable to industry adoption: my tools have been deployed in production to
millions of users at companies like Fastly and Mozilla, adopted by open source communities [4], and have found
bugs in critical systems like commercial airplane firmware [7].

Preserving Language-level Security in Real Systems
Languages like Rust and Wasm promise to prevent whole classes of vulnerabilities like memory corruption and
have the potential to change how we build systems. However, to make this a reality, they need to provide strong
guarantees—both safety and performance—for system designers to fully embrace them. In this section, I describe
my efforts to work with real system designers to deploy Rust and Wasm code with formally-proven safety and
production-ready performance.
VeriWasm: Preserving language-level safety at the binary level. Wasm compilers enforce memory isolation
by inserting safety checks at memory reads, memory writes, and control flow transfers to prevent sandboxed code
from interfering with the rest of the application. For performance reasons, the compilers do this before optimizing
the code, allowing checks to be moved or (when safe) removed. In practice, this can introduce subtle bugs in the
compiled code and has caused high severity CVEs in industrial toolchains [2, 6].

In response to this problem, I developed VeriWasm, a binary verifier for WebAssembly code. VeriWasm’s design
is driven by the needs of system designers using Wasm in production. For example, system designers turn on Wasm

1



compiler optimizations because they need their code to be fast and therefore can’t afford the overhead of using a
verified compiler, so VeriWasm statically checks compiled code instead. Similarly, the natural way to use a verifier
like VeriWasm is to integrate it into a continuous integration (CI) pipeline, so VeriWasm is designed to only use
lightweight analysis that can complete in seconds so as not to slow down CI. Addressing these two design constraints
led me to a key insight: by exploiting the structure of the Wasm language, VeriWasm can turn a hard-to-check global
security property—software isolation—into multiple easy-to-automatically-check local security properties. This
approach made it fully automatable and highly performant, making it well-suited for use in production systems.

In collaboration with Fastly, we deployed VeriWasm on their production cloud platform to verify that client
code is correctly sandboxed and cannot access memory that belongs to another client or the platform itself. This
integration led to official adoption of VeriWasm by the Bytecode Alliance, and it was upstreamed into the Lucet
sandboxing compiler [4]. Finally, I worked with ARM to integrate VeriWasm into Veracruz—ARM’s trusted
execution platform—to enable verifiably safe multitenancy on TEEs like TrustZone and AWS Nitro [1].
WaVe: Validating isolation guarantees across the userspace-kernel boundary. While VeriWasm guarantees
that sandboxed code cannot read or write outside its designated memory region, this, in itself, does not provide end-
to-end isolation. This is because real code sometimes needs to access resources outside the sandbox, e.g., using the
system call interface to read or write to files. Mediating access to these sorts of resources outside the sandbox is the
responsibility of the sandboxing runtime. Doing this correctly requires implementing an interface from informally-
specified POSIX calls to different OS platforms—each with slightly different, similarly informal specifications [23].
In practice this is tricky to get right and unsurprisingly, sandboxing runtimes are notoriously buggy [3, 5].

To address this problem, I developed WaVe [8], a verifiably secure sandboxing runtime. WaVe uses automated
verification to ensure that the runtime code preserves Wasm’s memory isolation guarantees and correctly restricts
each sandbox’s access to OS resources like the filesystem and network. What makes this work is the unique design
of WaVe’s specifications. WaVe only models system call’s userspace-observable effects. For example, WaVe’s
model of the POSIX read(fd,buf,count) syscall does not model kernel data structures (e.g., file descriptor
tables, inodes, or buffer caches); instead it only models what userspace sees—read may write count bytes
starting at buf from file (descriptor) fd. This makes it possible to “pay as you go”—you don’t need to specify
details about file descriptors if you only care about memory isolation. It also allows security policies to be explicit
and decoupled from enforcement. This not only makes it clear (and easy to audit) which policies WaVe enforces
but also ensures that WaVe enforces a uniform policy across all WASI hostcalls. This collaboration with Fastly
helped them identify dangerous ambiguities in the WASI specification and simplify the safety model, leading to
the removal of a redundant security mechanism, WASI capabilities.
Verified Tock: Retrofitting automatic verification to a production OS. VeriWasm and WaVe show how system
designers can remove the userspace execution stack from the trusted computing base, but developers are also using
memory-safe languages like Rust in the kernel [12, 25]. While this is an easy way to provide memory safety for
much of the kernel, in some ways it makes preserving language-level safety guarantees even more tricky. This
is because low-level OS functionality like interrupt handling and context switching simply cannot be written as
memory-safe code, and therefore must be must be written as unsafe code (e.g., inline assembly or unsafe Rust) that
then interfaces with safe code. In this unsafe code, the protections that were previously provided by the compiler
must be manually enforced by the developer. To address this problem, I developed new techniques to formally
reason about unsafe low-level code in Rust systems.

This led to my collaborators and I retrofitting lightweight verification to Tock [12]—a production OS written in
Rust and used by companies like Microsoft [30] and OxidOS [22]. One technique we developed is to lift low-level
operations like interrupt handling into Rust emulations of these low-level operations, so that the verifier can reason
about their control and data-flow. This lets us do two things: prove safety properties about these low-level operations
(e.g., that interrupts don’t clobber general-purpose registers), and reason about how these concurrent operations
affect the rest of the kernel’s execution. For instance, if an interrupt modifies a register, the verifier ensures that
the kernel treats the register as volatile (and therefore does not rely on a stored value in that register), since it will
be changing concurrently with kernel execution. This prevents subtle bugs like time-of-check-to-time-of-use that
would otherwise be impossible for the verifier to reason about. While this is still work in progress, it has already
found dangerous bugs, including an easily exploitable privilege escalation bug in the ARMv6 interrupt handling
code that allows userspace processes to access privileged memory and read and write other user’s sensitive data.

2



VeriZero & Colorguard: Scaling safe code with provably correct optimizations. After building a verified
Wasm stack, my collaborators and I spoke to security engineers at Mozilla about using Wasm to sandbox third-party
C libraries in Firefox. What we found is that although they recognized that sandboxing can provide strong security
guarantees, its performance overhead makes it an infeasible replacement for C in performance-sensitive production
systems like browsers. Upon further investigation, we found that the cause of the slowdown was not, as expected,
the dynamic checks that the sandboxing compiler uses to enforce isolation, but the the assembly-level context
switching code. Like OS context-switching, this code saves, clears, and restores every register so that untrusted
code cannot read or modify the state of the trusted code. Even in industrial compilers, this code is slow and
error-prone [14–17], but was accepted because it was seen as necessary to uphold Wasm’s sandboxing guarantees.

Our insight was that this code could be optimized exactly because we weren’t context switching between
arbitrary code: we were context switching between sandboxed code and sandboxed code has structure that we
can exploit. For example, if we can guarantee that the sandboxed code never reads uninitilized variables and has
forward control-flow integrity, we can elide saving/restoring callee-saved registers when we context switch. We
formalized five conditions on the structure of sandboxed code that together, can guarantee that we can safely elide
all context-switch code. Furthermore, these conditions are simple enough that we can prove that they provide the
security guarantees we need, and statically check that binary code preserves them. These lightweight transitions
incur no more performance overhead than a standard function call, improving performance and making it possible
to deploy SFI in production. Our optimized sandbox transition design was integrated into the wasm2c sandbox
compiler and used to speed up library sandboxing in Firefox, where it is still deployed today.

Continuing my work on verifiably safe optimizations for sandboxing, I collaborated with Intel to develop
Colorguard, an optimization for classic software fault isolation that reuses an existing hardware mechanism, mem-
ory protection keys (MPK), for new purposes. Colorguard allows serverless platforms like Fastly to safely pack
16x as many sandboxes in the virtual address space, and scale much more efficiently. Unfortunately, in practice,
it is complex to implement, as it requires a deep understanding of Intel hardware, and careful implementation
that ensures this hardware is never put into an insecure state, which can lead to a full-system compromise. My
solution was to verify the integration of the optimization into the broader system. This entails explicitly describing
hardware behavior and the security policy for the system and proving that regardless of how the system uses
the hardware management code, that the security policy never breaks. Because of this formal rigor, Colorguard
was embraced by the wider community and we were able to upstream it into three industrial compilers, Wasm2c
(Google), WAMR (Intel), and Wasmtime (Fastly). Furthermore, we were able to formally verify Wasmtime’s
integration of Colorguard into their sandbox memory allocator.

Future Work
My previous research demonstrates how combining lightweight formal methods with practical system design can
effectively mitigate vulnerabilities in real-world systems. My future research will expand on this theme in four
directions:
Retrofitting embedded systems with automatic verification. Expanding on my work on VTock and bug-finding
in critical systems [7], I am interested in developing more lightweight and practical means of verifying critical
embedded systems. While we would like these systems—e.g., medical devices like insulin pumps—to be fully
verified, this is not the current reality and unlikely to come to be as it is simply too burdensome for developers.
Given this practical reality, can we design systems that provide strong safety guarantees that system designers
most care about (e.g., that a sane insulin dosage is injected, regardless of the current state of the system) without
investing in a years-long verification process? Can we take advantage of embedded development best-practice like
hardware abstraction layers to build a library of reusable formally verified components? I plan to start to answer
these questions by building tools that can provide incremental, “pay-for-what-you-use” safety guarantees using a
combination of lightweight formal methods and compiler-based methods like software sandboxing. By combining
these techniques these tools will allow developers to retrofit security guarantees to existing code bases without
all the boilerplate that comes with standard verification projects.
Clean-slate OS design with lightweight isolation. Wasm has made lightweight isolation a practical reality, but its
potential is still largely unexplored. I am particularly interested in building an OS that replaces (or complements)
existing hardware-based memory isolation with lightweight software-based isolation. This design choice would

3



have several interesting consequences. Due to the portability of Wasm, it would be trivial to run the exact same OS
on a laptop, microcontroller, or any number of trusted execution environments like ARM TrustZone, SGX, or AWS
Nitro. Using Wasm would also have very different performance characteristics than using hardware-based isolation:
Wasm’s extra runtime checks would slow down CPU-bound workloads but its zero-cost context switches [11]
would make IO-bound and short-lived processes very efficient. But perhaps the most interesting advantage of using
a Wasm-based OS design is that we can take advantage of all the tools and techniques to provide formal safety
guarantees for Wasm code [8, 9, 11], and apply them totally out-of-the-box with no additional verification effort.
Building reliable scientific simulations. While my main research focus is to build systems that provide strong se-
curity guarantees, I am also interested in collaborating with colleagues to build principled systems in other domains.
I am particularly interested in building high-performance scientific simulations with correctness guarantees and
have already begun working with computational chemists and physicists towards this goal. I’m currently working
with scientists from UCSD and Lawrence Livermore National Lab to redesign their material discovery framework
using type-level programming—e.g., unit-of-measure types [10]—to provide simple safety guarantees. During this
work, I have discovered two unfortunate facts about high-performance scientific code: 1) it regularly contains mem-
ory corruption, undefined behavior, and easily-avoidable configuration errors that meaningfully change the output
of simulations, and 2) simulation validity depends on implementations upholding complex domain-specific prop-
erties like detailed balance [29] that may not be preserved in real code. This is concerning as scientific simulations
are used to influence government policy and to prescribe personalized medicine. How can we build systems that
don’t rely on scientists, who may or may not be experienced developers, to uphold properties in these codebases?
How can we formally reason about simulation validity invariants like detailed balance [29] in real codebases?
Principled safety for modern foreign function interfaces. Transitioning existing code bases from memory-unsafe
to memory-safe languages (like Wasm and Rust) has garnered significant support in industry [24] and govern-
ment [21, 28] alike. While transitioning these codebases is a worthy and valuable goal, it also has the potential
to introduce subtle bugs into systems that undergo this process. This is because this transitioning a codebase is
necessarily incremental, so the Rust code must interact with C/C++ components via the foreign-function interface
(FFI), where data is reduced to bytes and pointers, reinforcing the very problems that Rust was designed to solve.
Can we replace the current status quo of developers writing ad hoc glue code with more principled methods that
preserve the strong safety that Rust’s type system and borrow checker offer? Can we design type systems (and
generate glue code) for foreign function interfaces that provide strong safety without burdensome static or dynamic
analysis? What tradeoffs (e.g., performance vs. safety vs. simplicity) can be made to ensure these methods are
applicable to a variety of production systems?

Ultimately, I will continue to design principled and practical solutions to software security’s thorniest problems
and ensure the software of the future keeps its promises.

References
[1] M. Brossard, G. Bryant, B. E. Gaabouri, X. Fan, A. Ferreira, E. G. Evans, C. Haster, E. Johnson, D. Miller, F. Mo, D. P. Mulligan, N. Spinale, E. van

Hensbergen, H. J. M. Vincent, and S. Xiong. Private delegated computations using strong isolation. IEEE Transactions on Emerging Topics in Computing,
12(1):386–398, 2024.

[2] A. Crichton. Guest-controlled out-of-bounds read/write on x86 64. https://github.com/bytecodealliance/wasmtime/security/
advisories/GHSA-ff4p-7xrq-q5r8, 2023.

[3] A. Crichton. Data leakage between instances in the pooling allocator. https://github.com/bytecodealliance/wasmtime/security/
advisories/GHSA-wh6w-3828-g9qf, 2024.

[4] C. Fallin. Integrate VeriWasm. https://github.com/bytecodealliance/lucet/pull/658, 2021.

[5] D. Gohman. Wasmtime doesn’t fully sandbox all the windows device filenames. https://github.com/bytecodealliance/wasmtime/
security/advisories/GHSA-c2f5-jxjv-2hh8, 2024.

[6] L. Hansen. Mark the jump table entry instruction as loading. https://github.com/bytecodealliance/cranelift/pull/805, 2019.

[7] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage, and K. Levchenko. Jetset: Targeted firmware rehosting for embedded systems. In
30th USENIX Security Symposium (USENIX Security 21), pages 321–338, 2021.

[8] E. Johnson, E. Laufer, Z. Zhao, D. Gohman, S. Narayan, S. Savage, D. Stefan, and F. Brown. Wave: a verifiably secure WebAssembly sandboxing runtime.
In IEEE Symposium on Security and Privacy (S&P). IEEE, May 2023.

[9] E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner, T. McMullen, S. Savage, and D. Stefan. Trust but verify: SFI safety for native-compiled
Wasm. In Network and Distributed System Security Symposium (NDSS). Internet Society, February 2021.

[10] A. Kennedy. Types for units-of-measure: Theory and practice. In Central European Functional Programming School, pages 268–305. Springer, 2009.

[11] M. Kolosick, S. Narayan, C. Watt, M. LeMay, D. Garg, R. Jhala, and D. Stefan. Isolation without taxation: Near zero cost transitions for sfi. In ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL). ACM, January 2022.

4



[12] A. Levy, B. Campbell, B. Ghena, D. B. Giffin, P. Pannuto, P. Dutta, and P. Levis. Multiprogramming a 64kb computer safely and efficiently. In Proceedings
of the 26th Symposium on Operating Systems Principles, pages 234–251, 2017.

[13] A. E. Michael, A. Gollamudi, J. Bosamiya, E. Johnson, A. Denlinger, C. Disselkoen, C. Watt, B. Parno, M. Patrignani, M. Vassena, and D. Stefan. Mswasm:
Soundly enforcing memory-safe execution of unsafe code. Proc. ACM Program. Lang., 7(POPL), Jan. 2023.

[14] Issue 1607: Signal handling change allows inner sandbox escape on x86-32 linux in chrome. https://bugs.chromium.org/p/nativeclient/
issues/detail?id=1607, 2011.

[15] Issue 1633: Inner sandbox escape on 64-bit windows via kiuserexceptiondispatcher. https://bugs.chromium.org/p/nativeclient/issues/
detail?id=1633, 2011.

[16] Issue 2919: Security: Naclswitch() leaks naclthreadcontext pointer to x86-32 untrusted code. https://bugs.chromium.org/p/nativeclient/
issues/detail?id=2919, 2012.

[17] Issue 775: Uninitialized sendmsg syscall arguments in sel ldr. https://bugs.chromium.org/p/nativeclient/issues/detail?id=775,
2010.

[18] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson, Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham, D. Tullsen, et al. Swivel:
Hardening {WebAssembly} against spectre. In 30th USENIX Security Symposium (USENIX Security 21), pages 1433–1450, 2021.

[19] S. Narayan, T. Garfinkel, E. Johnson, D. Thien, J. Rudek, M. LeMay, A. Vahldiek-Oberwagner, D. Tullsen, and D. Stefan. Segue & colorguard: Optimizing
sfi performance and scalability on modern x86. In The 17th Workshop on Programming Languages and Analysis for Security, 2022.

[20] S. Narayan, T. Garfinkel, M. Taram, J. Rudek, D. Moghimi, E. Johnson, C. Fallin, A. Vahldiek-Oberwagner, M. LeMay, R. Sahita, D. Tullsen, and D. Stefan.
Going beyond the limits of sfi: Flexible and secure hardware-assisted in-process isolation with hfi. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 3, ASPLOS 2023, pages 266–281, New York, NY, USA, 2023.
Association for Computing Machinery.

[21] Office of the National Cyber Director. Press release: Future software should be memory safe. https://www.whitehouse.gov/oncd/
briefing-room/2024/02/26/press-release-technical-report/, 2024.

[22] A. Radovici. OxidOS Automotive. https://oxidos.io/, 2024.

[23] T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and P. Sewell. Sibylfs: formal specification and oracle-based testing for posix and real-world
file systems. In Proceedings of the 25th Symposium on Operating Systems Principles, pages 38–53, 2015.

[24] J. V. Stoep and S. Hines. Rust in the Android Platform. https://security.googleblog.com/2021/04/rust-in-android-platform.
html, 2021.

[25] The Linux Foundation. Rust for linux. https://rust-for-linux.com/, 2024.

[26] The Vtock Team. Vtock. git@github.com:PLSysSec/tock.git, 2024.

[27] K. Varda. WebAssembly on Cloudflare workers. https://blog.cloudflare.com/webassembly-on-cloudflare-workers/, 2018.

[28] D. Wallach. Translating All C to Rust (TRACTOR). https://www.darpa.mil/program/translating-all-c-to-rust, 2024.

[29] Wikipedia. Detailed balance. https://en.wikipedia.org/wiki/Detailed_balance, 2024.

[30] C. Windeck. Microsoft security controller Pluton is also coming to Intel Core. https://www.heise.de/en/news/
Microsoft-security-controller-Pluton-is-also-coming-to-Intel-Core-9833954.html, 2024.

5


